学历类会计硕士数学三单选题
1、【题目】设A,B为随机事件,若0
选项:
答案:
解析:
1、【题目】若函数,x>0在x=0连续,则()。
选项:
A.ab=1/2
B.ab=-1/2
C.ab=0
D.ab=2
答案:
解析:
1、【题目】甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则()。
选项:
答案:
解析:
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
解析:
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
C
解析:
分类讨论题目。投掷出正面的概率为(1/2),投掷出反面的概率为(1/2)。
若投掷第一次正面向上停止,概率为(1/2),
投掷两次,一次反面一次正面,概率相等,不考虑。
若投掷三次,则第一次定为反面,后两次为正面,概率=(1/2)*(1/2)*(1/2)=1/8
每种情况的概率相加1/2+1/8=5/8
所以答案选C
1、【题目】某工厂在半径为5cm的球形工艺品上镀上一层装饰金属,厚度为0.01cm,已知装20cm的正方体,则加工10000个该工艺品需要多少个这样的正方体()
选项:
A.2
B.3
C.4
D.5
E.20
答案:
C
解析:
球的体积=球面积*厚度=4πr?*0.01=π,加工10000个所需体积≈31400
金属正方体体积=20*20*20=8000
31400÷8000≈4
所以答案选C
1、【题目】某工厂在半径为5cm的球形工艺品上镀上一层装饰金属,厚度为0.01cm,已知装20cm的正方体,则加工10000个该工艺品需要多少个这样的正方体()
选项:
A.2
B.3
C.4
D.5
E.20
答案:
解析:
1、【题目】设 A,B 为随机事件,若 0
选项:
答案:
A
解析:
暂无解析
1、【题目】已知{an}为等差数列,且a2-a5+a8=9,则a1+a2+……+a9=()
选项:
A.27
B.45
C.54
D..81
E.162
答案:
解析:
1、【题目】函数f (x, y, z)=x2 y+ z2 在点 (1,2,0) 处沿向量 r/n=(1,2,0)的方向导数为()。
选项:
A.12
B.6
C.4
D.2
答案:
D
解析:
暂无解析
1、【题目】如图3,正方体的棱长为2,F是棱的中点,则AF的长为()
选项:
A.3
B.5
C.√5
D.2√2
E.2√3
答案:
A
解析:
做辅助线FG⊥CD,垂足为G,链接AG
由题意可知,FG∥CC,DG=?DC=1,AD=2,有勾股定理得AG=√5,AF=√(FG?+AG?)=3
所以答案选A
1、【题目】设函数 f (x) 可导,且 f ( x) f '(x)>0 ,则()。
选项:
答案:
C
解析:
暂无解析
1、【题目】已知直线l是圆X?+Y?=5在点(1,2)处的切线,则l在y轴上的截距是()
选项:
A.2/5
B.2/3
C.3/2
D.5/2
E.5
答案:
解析:
1、【题目】某单位决定对4个部门的经理进行轮岗,要求每位经理必须轮换到4个部门的其他()
选项:
A.3种
B.6种
C.8种
D.9种
E.10种
答案:
D
解析:
不看要求总共有4*3*2*1=24种方案
四个人都分到自己部门的方案有1种
三个人分到自己部门的方案有C(3,4)=4种
两个人分到自己部门的方案有C(2,4)=6种
一个人分到自己部门的方案有C(1,4)=4种
每位经理必须轮换到4个部门的其他部门任职,则不同的轮岗方案有24-1-4-6-4=9种
所以答案选D
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
解析: