研究生考试「设A,B为随机事件,若0」相关单选题
1、【题目】设 A,B 为随机事件,若 0
选项:
答案:
A
解析:
暂无解析
1、【题目】掷一枚均匀的硬币若干次,当正面次数向上大于反面次数向上时停止,则在4次之内()
选项:
A.1/8
B.3/8
C.5/8
D.3/16
E.5/16
答案:
解析:
1、【题目】设
选项:
A.
B.
C.
D.
答案:
B
解析:
暂无解析
1、【题目】设A,B为随机事件,若0
选项:
答案:
解析:
1、【题目】甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇,最后速度均1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇,则A,B两()
选项:
A.5.6公里
B.7公里
C.8公里
D.9公里
E.9.5公里
答案:
D
解析:
设AB两地距离为x公里。甲速度为V1,乙速度为V2
甲乙两人上午8:00分别从A,B两地出发相向而行,9:00第一次相遇
则有公式:X/(V1+V2)=1,即X=V1+V2……①
速度均提高了1.5公里/小时,甲到B,乙到A后立刻返回,若两人在10:30再次相遇
则有公式:2X/(V1+V2+3)=1.5……②
将①带入②,的2X/(X+3)=1.5,∴X=9
所以答案为D
1、【题目】设函数 f (x) 可导,且 f ( x) f '(x)>0 ,则()。
选项:
答案:
C
解析:
暂无解析
1、【题目】如图2,圆A与圆B的半径为1,则阴影部分的面积为()
选项:
A.S四边形ABCD-S扇=2S扇-2S△ACD=(2/3)π-(√3)/2
B.S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
C.2S扇-S四边形ABCD=S扇-S△ACD=(2/3)π-(√3)/2
D.2S扇-S四边形ABCD=S扇-2S△ACD=(2/3)π-(√3)/2
E.2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
答案:
E
解析:
做辅助线,两圆相交C、D两点(C在上面,D在下面)。链接AB、CD、AC、AD。
和CD交于点F。
由扇形公式得知:S=(n/360)πr?,n是扇形圆心角,r是圆半径。
两个圆的半径为1,即AB=AC=CB=1,△ABC为等边三角形。同理,△ABD为等边三角
CAB=60°,∠CAD=120°。S扇形=(1/3)πr?=(1/3)π
由勾股定理得CD=√3,S△ACD=(?)CD*AF=(√3)/4
∴阴影部分面积=2S扇-S四边形ABCD=2S扇-2S△ACD=(2/3)π-(√3)/2
所以答案选E
1、【题目】某容器中装满了浓度为90%的酒精,倒出1升后用水装满,摇匀后又倒出1升,再用40%,则该容器的容积是
选项:
A.2.5升
B.3升
C.3.5升
D.4升
E.4.5升.
答案:
解析: