问题标题:
设抛物线C1的方程为y2=2px,其中p>o:椭圆C2的方程为(x-2-p/2)的平方+4y2=4.问p在什么范围内抛物线与椭圆有4个不同的交点?联立了以后为什么转化为一元二次不等式的判别式有两个不等的正根?
问题描述:
设抛物线C1的方程为y2=2px,其中p>o:椭圆C2的方程为(x-2-p/2)的平方+4y2=4.
问p在什么范围内抛物线与椭圆有4个不同的交点?联立了以后为什么转化为一元二次不等式的判别式有两个不等的正根?
谭多鸿回答:
根据图形,有且只有两个交点,将c1和c2方程联立,消去y,可得到一个带参数p的关于x的一元二次方程,由关于p的判别式可得出方程有一正一负两个实数根,但由c1方程可知,x值只能为正,也就是说c1和c2的交点只能是在第一和第四...
点击显示
数学推荐
热门数学推荐