问题标题:
帮我求下列极限:lim(x趋向于正无穷)(3-2x/2-2x)^x;得有过程
问题描述:
帮我求下列极限:lim(x趋向于正无穷)(3-2x/2-2x)^x;得有过程
刘建昌回答:
(3-2x)/(2-2x)
=(2x-2-1)/(2x-2)
=1-1/(2x-2)
令1/a=-1/(2x-2)
则a趋于负无穷
a=-2x+2
x=-a/2+1
则原式=(1+1/a)^(-a/2+1)
=(1+1/a)^(-a/2)×(1+1/a)
=[(1+1/a)^a]^(-1/2)×(1+1/a)
(1+1/a)^a极限是e,(1+1/a)极限是1
所以原来极限=e^(-1/2)=√e/e
点击显示
数学推荐
热门数学推荐