问题标题:
【已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.】
问题描述:
已知F1,F2是椭圆x^2/4+y^2=1的两个焦点,P为椭圆上一点,角F1PF2=60°,求三角形F1PF2的面积.
曲磊回答:
椭圆x^2/4+y^2=1
∴a=2,b=2,则c=√3(√3表示根号3)
∴|F1F2|=2c=2√3
椭圆定义得到|PF1|+|PF2|=4
∴设|PF1|=x,则|PF2|=4-x
在ΔF1PF2,∠F1PF2=60°
由余弦定理得:
cos60°=[x^2+(4-x)^2-12]/2x(4-x)
计算得:x=2±(2√6)/3
即|PF1|、|PF2|为2±(2√6)/3
∴SΔ=1/2×|PF1|×|PF2|×sin∠F1PF2
=√3/3
点击显示
数学推荐
热门数学推荐