字典翻译 问答 高中 数学 【求高中数学必修1的知识点总结】
问题标题:
【求高中数学必修1的知识点总结】
问题描述:

求高中数学必修1的知识点总结

刘翀回答:
  1.集合   (约4课时)   (1)集合的含义与表示   ①通过实例,了解集合的含义,体会元素与集合的“属于”关系.   ②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.   (2)集合间的基本关系   ①理解集合之间包含与相等的含义,能识别给定集合的子集.   ②在具体情境中,了解全集与空集的含义.   (3)集合的基本运算   ①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.   ②理解在给定集合中一个子集的补集的含义,会求给定子集的补集.   ③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.   2.函数概念与基本初等函数I   (约32课时)   (1)函数   ①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.   ②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.   ③了解简单的分段函数,并能简单应用.   ④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义.   ⑤学会运用函数图象理解和研究函数的性质(参见例1).   (2)指数函数   ①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景.   ②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算.   ③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点.   ④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2).   (3)对数函数   ①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用.   ②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.   ③知道指数函数与对数函数互为反函数(a>0,a≠1).   (4)幂函数   通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况.   (5)函数与方程   ①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.   ②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法.   (6)函数模型及其应用   ①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.   ②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用.   (7)实习作业   根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流.具体要求参见数学文化的要求.
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考