问题标题:
已知抛物线的顶点在原点,对称轴为X轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是1616是怎么来的,有详细步骤吗
问题描述:
已知抛物线的顶点在原点,对称轴为X轴,焦点在直线3x-4y-12=0上,那么抛物线通径长是16
16是怎么来的,有详细步骤吗
宋玉章回答:
直线3x-4y-12=0
当y=0时x=4直线与x轴交点为(4,0)
由已知抛物线的顶点在原点,对称轴为X轴,焦点为(4,0)
即P/2=4,P=8
所以抛物线方程为y2=16x
抛物线通就是过抛物线焦点且垂直于对称轴的弦长
联立x=4,y2=16x
得M(4,8),N(4,-8)|MN|=16
点击显示
其它推荐