问题标题:
【证明x→0时,arctanx→0.由于是同济高数无穷小比较节的习题,希望能给出不用后续连续性、导数概念的证明】
问题描述:
证明x→0时,arctanx→0.由于是同济高数无穷小比较节的习题,希望能给出不用后续连续性、导数概念的证明
火清宁回答:
可用定义:对于任意的正数ε(ε<1),要使得|arctanx-0|<ε,即-ε<arctanx<ε,因为arctanx单调增加,所以只要|x|<tanε即可.所以取δ=tanε,当0<|x|<δ时,恒有|arctanx-0|<ε.所以x→0时,arctanx→0
点击显示
数学推荐
热门数学推荐