字典翻译 问答 小学 数学 直线Y=kx+b交抛物线Y=1/2x^2于A,B两点,O为抛物线的顶点,且OA⊥OB,求b的值
问题标题:
直线Y=kx+b交抛物线Y=1/2x^2于A,B两点,O为抛物线的顶点,且OA⊥OB,求b的值
问题描述:

直线Y=kx+b交抛物线Y=1/2x^2于A,B两点,O为抛物线的顶点,且OA⊥OB,求b的值

潘炎回答:
  若存在固定的b值,则令k=0,找平行于x轴的直线与抛物线相交即可.   从而有:y=b=1/2x^2   因OA⊥OB,而AB平行于x轴,所以OA的倾角为45度或135度,从而有y=x=1/2x^2,即x=2或-2,   所以   若存在固定的b值,则b=y=2.   讨论对任意k,有y=kx+2使符合题意.y=kx+2=1/2x^2   A(k+根号下4+k方,2+k*(k+根号下4+k方))   B(k-根号下4+k方,2+k*(k-根号下4+k方))   考察OA与OB的斜率之积,化简后=-1,从而证明:   当b=2时,对于任意K,有y=kx+2使符合题意
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文