问题标题:
设k∈R,函数f(x)=lnx-kx.(1)若k=2,求曲线y=f(x)在P(1,-2)处的切线方程;(2)若f(x)无零点,求实数k的取值范围;(3)若f(x)有两个相异零点x1,x2,求证:lnx1+lnx2>2.
问题描述:
设k∈R,函数f(x)=lnx-kx.
(1)若k=2,求曲线y=f(x)在P(1,-2)处的切线方程;
(2)若f(x)无零点,求实数k的取值范围;
(3)若f(x)有两个相异零点x1,x2,求证:lnx1+lnx2>2.
曹德侠回答:
(1)函数的定义域为(0,+∞),f′(x)=1x-k=1-kxx
点击显示
数学推荐
热门数学推荐