问题标题:
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.(1)求证:AF⊥BE;(2)试探究线段AO、BO、GO的长度之间的数量关系;(3)若GO:CF=4:5,试确定E点的位置.__
问题描述:
如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.
(1)求证:AF⊥BE;
(2)试探究线段AO、BO、GO的长度之间的数量关系;
(3)若GO:CF=4:5,试确定E点的位置.
____
曲镜圆回答:
【分析】(1)由DE=CF及正方形的性质,得出AE=DF,AB=AD,∠BAE=∠ADF=90°,证明△ABE≌△DAF,得出∠ABE=∠DAF,而∠ABE+∠AEB=90°,利用互余关系得出∠AOE=90°即可证得结论;n(2)由(1)中的结论可证得△ABO≌△DA...
点击显示
物理推荐
热门物理推荐