问题标题:
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≦|f(π/6)|对于x属于R恒成立,且f(π/2)>f(π),则fx的单调区间是?告诉我第一步因为f(x)≦|f(π/6)|对于x属于R恒成立,所以|f(π/6)|=1,为什么
问题描述:
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≦|f(π/6)|对于x属于R恒成立,且f(π/2)>f(π),
则fx的单调区间是?告诉我第一步因为f(x)≦|f(π/6)|对于x属于R恒成立,所以|f(π/6)|=1,为什么
蔡鹏星回答:
已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f(π/6)|对x∈R恒成立,且f(π/2)>f(π),则f(x)的单调递增区间是解析:∵函数f(x)=sin(2x+φ),f(x)≤|f(π/6)|对x∈R恒成立∴f(x)在x=π/6处取最值∴f(π...
田广回答:
、
点击显示
数学推荐
热门数学推荐