问题标题:
在平面直角坐标系中,将抛物线y=x^2+2x+3绕着它与y轴的交点旋转180度,所得抛物线的解析式是()主要讲讲中心对称的坐标变化,
问题描述:
在平面直角坐标系中,将抛物线y=x^2+2x+3绕着它与y轴的交点旋转180度,所得抛物线的解析式
是()主要讲讲中心对称的坐标变化,
刘青宝回答:
由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(-1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=-(x-1)2+4.
点击显示
数学推荐
热门数学推荐