问题标题:
【如图1,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.(1)求⊙M的】
问题描述:
如图1,在平面直角坐标系xoy中,M是x轴正半轴上一点,⊙M与x轴的正半轴交于A,B两点,A在B的左侧,且OA,OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限.
(1)求⊙M的直径的长.
(2)如图2,将△ONM沿ON翻转180°至△ONG,求证△OMG是等边三角形.
(3)求直线ON的解析式.
万凯航回答:
(1)解方程x2-12x+27=0,
(x-9)(x-3)=0,
解得:x1=9,x2=3,
∵A在B的左侧,
∴OA=3,OB=9,
∴AB=OB-OA=6,
∴OM的直径为6;
(2)由已知得:MN=GN=3,OG=OM=6,
∴OM=OG=MN=6,
∴△OMG是等边三角形.
(3)如图2,过N作NC⊥OM,垂足为C,
连结MN,则MN⊥ON,
∵△OMG是等边三角形.
∴∠CMN=60°,∠CNM=30°,
∴CM=12
点击显示
数学推荐
热门数学推荐