问题标题:
【如果方程x²+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请根据以上结论,⑴已知关于x的方程x²+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;⑵已知a,b满足a²】
问题描述:
如果方程x²+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.请根据以上结
论,
⑴已知关于x的方程x²+mx+n=0(n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;
⑵已知a,b满足a²-15a-5=0,b²-15b-5=0,求a/b+b/a的值;
⑶已知a,b,c均为实数,且a+b+c=0,abc=16,求正数c的最小值.
李传荣回答:
1)方程x^2+mx+n=0(n≠0)的两根为x1.x2,且x1+x2=-m,x1*x2=n新方程的两根为y1,y2,y1+y2=1/x1+1/x2=(x1+x2)/x1*x2=-m/ny1*y2=1/x1*(1/x2)=1/x1*x2=1/n所以新方程为y^2+(m/n)y+1/n=0,整理:ny^2+my+1=02)依题意,a,b是方...
点击显示
数学推荐
热门数学推荐