问题标题:
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.(Ⅰ)F为抛物线C的焦点,若|AM|=54|AF|,求k的值;(Ⅱ)是否存在这样的k,使得对任意
问题描述:
如图,已知抛物线C:y2=2px(p>0)的准线与x轴交于M点,过M点斜率为k的直线l与抛物线C交于A、B两点.
(Ⅰ)F为抛物线C的焦点,若|AM|=
(Ⅱ)是否存在这样的k,使得对任意的p,抛物线上C总存在点Q,使得QA⊥QB,若存在,求出k的取值范围;若不存在,说明理由.
胡青回答:
解(Ⅰ)记A点到准线距离为d,直线l的倾斜角为α,由抛物线的定义知|AM|=54d,∴cosα=d|AM|=45,则sinα=1−cos2α=1−(45)2=35,∴k=±tanα=±sinαcosα=±3545=±34.(Ⅱ)存在k,k的取值范围为[−55,...
点击显示
其它推荐