问题标题:
已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.(1)求f(2)的值;(2)已知实数t≥12,求u=xln
问题描述:
已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.
(1)求f(2)的值;
(2)已知实数t≥
彭宇宁回答:
(1)y=f(x)图象与x轴异于原点的交点M(a,0),f′(x)=2x-a,
y=g(x-1)=ln(x-1)图象与x轴的交点N(2,0),g′(x-1)=1x-1
点击显示
其它推荐