问题标题:
如图,△ABC是等腰三角形,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为E,连接CE,求sin∠ACE的值.
问题描述:
如图,△ABC是等腰三角形,∠ACB=90°,过BC的中点D作DE⊥AB,垂足为E,连接CE,求sin∠ACE的值.
阮海林回答:
∵△ABC是等腰三角形,∠ACB=90°,
∴∠B=∠A=45°.
∵DE⊥AB,
∴∠EDB=45°.
过点E作EF⊥AC于F,则∠CFE=90°.
设BE=x,则DE=x,BD=2
点击显示
其它推荐