问题标题:
【2到100之间的偶数的立方和如题,3332+4+.+100那么1到100奇数呢,可能没规律】
问题描述:
2到100之间的偶数的立方和
如题,333
2+4+.+100
那么1到100奇数呢,可能没规律
包振远回答:
2^3+4^3+……+(2n)^3(n=50)
=2^3*(1^3+2^3+3^3+4^3+……+n^3)
=8*{n(n+1)/2}^2
=2*{n(n+1)}^2
把n=50代入
得原式=13005000
注:自然数立方和有公式如下
1^3+2^3+...+n^3=[n(n+1)/2]^2
点击显示
数学推荐
热门数学推荐