问题标题:
设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx
问题描述:
设shX=[e^x-(1/e)^x]/2,chx=[e^x+(1/e)^x]/2,证明(shx)‘=chx,(chx)’=shx
翟俊海回答:
(shX)'=[e^x-(1/e)^x·(-x)']/2=[e^x+(1/e)^x]/2=chX
(chX)'=[e^x+(1/e)^x·(-x)']/2=[e^x-(1/e)^x]/2=shX
证毕
点击显示
历史推荐
热门历史推荐