问题标题:
已知向量组a1a2a3线性无关,向量组a1a2a3a4线性相关,向量组a1a2a3a4的秩为4,证明a1a2a3a5-a4线性无关?
问题描述:
已知向量组a1a2a3线性无关,向量组a1a2a3a4线性相关,向量组a1a2a3a4的秩为4,证明a1a2a3a5-a4线性无关?
齐向昆回答:
Isuppose:"向量组a1a2a3a5的秩为4"
insteadof:"向量组a1a2a3a4的秩为4"
向量组a1a2a3a5的秩为4=>a1,a2,a3,a5线性无关
a1a2a3a4线性相关
=>a4=m1a1+m2a2+m3a3
k1a1+k2a2+k3a3+k4(a5-a4)=0
k1a1+k2a2+k3a3+k4a5-k4(m1a1+m2a2+m3a3)=0
(k1-k4m1)a1+(k2-k4m2)a2+(k3-k4m3)a3+k4a5=0
=>
(k1-k4m1)=0(1)and
(k2-k4m2)=0(2)and
(k3-k4m3)=0(3)and
k4=0(4)
thenk3=k2=k1=0
ie
a1,a2,a3,a5-a4线性无关
点击显示
数学推荐
热门数学推荐