问题标题:
【已知数列1/1x3,1/3x5,1/5x7,……1/(2n-1)(2n+1)其前n项和为Sn求S已知数列1/1x3,1/3x5,1/5x7,……1/(2n-1)(2n+1)其前n项和为Sn求S1.2.3.4求前n项和Sn】
问题描述:
已知数列1/1x3,1/3x5,1/5x7,……1/(2n-1)(2n+1)其前n项和为Sn求S
已知数列1/1x3,1/3x5,1/5x7,……1/(2n-1)(2n+1)其前n项和为Sn
求S1.2.3.4
求前n项和Sn
柏森回答:
1/[(2n-1)(2n+1)]=(1/2)[1/(2n-1)-1/(2n+1)]
1/(1x3)+1/(3x5)+1/(5x7)+...+1/[(2n-1)(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)
S1=1/3
S2=2/5
S3=3/7
S4=4/9
点击显示
数学推荐
热门数学推荐