问题标题:
【计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的闭区域】
问题描述:
计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的闭区域
杜江回答:
极坐标∫∫(D)ln(1+x²+y²)dxdy=∫∫(D)rln(1+r²)drdθ=∫[0→2π]dθ∫[0→1]rln(1+r²)dr=2π∫[0→1]rln(1+r²)dr=π∫[0→1]ln(1+r²)d(r²)=πr²ln(1+r²)-2π...
点击显示
数学推荐
热门数学推荐