问题标题:
【外切于半径为R的球的圆锥,侧面积与球面积之比为3:2,求圆锥底面半径r】
问题描述:
外切于半径为R的球的圆锥,侧面积与球面积之比为3:2,求圆锥底面半径r
胡其蔚回答:
设t为圆锥侧面与底面夹角,
则母线长l=r/cos(t)
R=r*tan(t/2)
圆锥侧面积s1=pi*l*r=pi*r/cos(t)*r
球的表面积s2=4*pi*R^2=4*pi*r^2*tan(t/2)^2
s1/s2=1/cos(t)/4tan(t/2)^2=3/2
=>1/cos(t)*(1+cos(t)/(1-cos(t))=6(tan(t/2)^2=(1-cos(t))/(1+cos(t))
=>cos(t)=1/2或者1/3
=>tan(t/2)=sqrt((1-cos(t))/(1+cos(t)))=√3/3或者√2/2
=>r=R/tan(t/2)=√2R或者√3R
点击显示
数学推荐
热门数学推荐