问题标题:
(2014•抚州)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可
问题描述:
(2014•抚州)如图,抛物线y=ax2+2ax(a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P1P2的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,Fn.我们把这组图象称为“波浪抛物线”.
(1)当a=-1时,①求图象F1的顶点坐标;②点H(2014,-3)______(填“在”或“不在”)该“波浪抛物线”上;若图象Fn的顶点Tn的横坐标为201,则图象Fn对应的解析式为______,其自变量x的取值范围为______.
(2)设图象Fn、Fn+1的顶点分别为Tn、Tn+1(n为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、Tn、Tn+1、Q四点为顶点的四边形为矩形?并直接写出此时n的值.
体卫群回答:
(1)当a=-1时,①y=ax2+2ax=-x2-2x=-(x+1)2+1,∴图象F1的顶点坐标为:(-1,1);②∵该“波浪抛物线”顶点坐标纵坐标分别为1和-1,∴点H(2014,-3),不在该“波浪抛物线”上,∵图象Fn的顶点Tn的横坐标为201...
点击显示
其它推荐
热门其它推荐