问题标题:
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比数列.(1)求数列{an•bn}的通项公式;(2)求数列{an•bn}的前n项和Tn.
问题描述:
已知数列{an}的通项公式为an=3n-1,在等差数列数列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,
又a1+b1、a2+b2、a3+b3成等比数列.
(1)求数列{an•bn}的通项公式;
(2)求数列{an•bn}的前n项和Tn.
管西强回答:
(1)∵an=3n-1(n∈N*),∴a1=1,a2=3,a3=9,
在等差数列{bn}中,∵b1+b2+b3=15,∴b2=5.
设等差数列{bn}的公差为d,
∵a1+b1、a2+b2、a3+b3成等比数列.
∴(1+5-d)(9+5+d)=64,解得d=-10或d=2,
∵bn>0(n∈N*),∴舍去d=-10,取d=2,
∴b1=3,b3=7,∴bn=2n+1(n∈N*),
∴an•bn=(2n+1)3n-1,
(2)由(1)知,Tn=3×1+5×3+7×32+…+(2n-1)3n-2+(2n+1)3n-1,①
3Tn=3×3+5×32+7×33+…+(2n-1)3n-1+(2n+1)3n,②
①-②得-2Tn=3×1+2×3+2×32+2×33+…+2×3n-1-(2n+1)3n
=3+2(3+32+33+…+3n-1)-(2n+1)3n=3+2×3(1−3n−1)1−3-(2n+1)3n=3n-(2n+1)3n=-2n•3n,
∴Tn=n•3n.
点击显示
数学推荐
热门数学推荐