问题标题:
已知x+y+z=3xy+yz+zx=3xyz=1求(x+y)(y+z)(z+x)
问题描述:
已知x+y+z=3xy+yz+zx=3xyz=1求(x+y)(y+z)(z+x)
刘秀芬回答:
(x+y)(y+z)(z+x)
=(3-z)(3-x)(3-y)
=(9-3x-3z+xz)(3-y)
=27-9y-9x+3xy-9z+3yz+3xz-xyz
=27-9(x+y+z)+3(xy+yz+xz)-xyz
=27-9*3+3*3-1
=27-27+9-1
=8
点击显示
数学推荐
热门数学推荐