问题标题:
【已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),(1)求证数列{an+2}为等比数列;(2)若数列{bn}满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求证:Tn<32.】
问题描述:
已知数列{an}的前n项和为Sn,满足Sn=2an-2n(n∈N*),
(1)求证数列{an+2}为等比数列;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{
唐颖回答:
(1)由Sn=2an-2n(n∈N*)可得sn-1=2an-1-2(n-1)(n≥2),
两式相减得:an=2an-1+2(n≥2),
∴an+2=2(an-1+2)(n≥2),
∴a
点击显示
其它推荐