问题标题:
已知集合A={1,2,3,…,2n(n∈N*)}.对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.(Ⅰ)当n=10时,试判断集合B={x∈A|x
问题描述:
已知集合A={1,2,3,…,2n(n∈N*)}.对于A的一个子集S,若存在不大于n的正整数m,使得对于S中的任意一对元素s1,s2,都有|s1-s2|≠m,则称S具有性质P.
(Ⅰ)当n=10时,试判断集合B={x∈A|x>9}和C={x∈A|x=3k-1,k∈N*}是否具有性质P?并说明理由.
(II)若集合S具有性质P,试判断集合 T={(2n+1)-x|x∈S)}是否一定具有性质P?并说明理由.
汪霖回答:
(Ⅰ)当n=10时,集合A={1,2,3,,19,20},B={x∈A|x=10,11,12,,19,20}不具有性质P.因为对任意不大于10的正整数m,都可以找到集合B中两个元素b1=10与b2=10+m,使得|b1-b2|=m成立.集合C={x∈A|x=3k-1,k∈N...
点击显示
其它推荐
热门其它推荐