问题标题:
函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,设函数f(x)在[0,1]上为非减函数,且满足以下三个条件,①f(0)=0,②,f(1-x)+f(x)=1,③f(x/3)=1/2f(x),则f(1/3)+f(5/
问题描述:
函数f(x)的定义域为D,若对任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数,
设函数f(x)在[0,1]上为非减函数,且满足以下三个条件,①f(0)=0,②,f(1-x)+f(x)=1,③f(x/3)=1/2f(x),则f(1/3)+f(5/12)的值为___________.
宋海娜回答:
易得f(1)=1f(1/3)=1/2f(1/2)=1/2;因为f(x)在[0,1]上非减,则1/3
点击显示
数学推荐
热门数学推荐