字典翻译 问答 小学 数学 n(n+1)/1+(n+1)(n+2)/1+.+(n+2007)(n+2008)/1=?
问题标题:
n(n+1)/1+(n+1)(n+2)/1+.+(n+2007)(n+2008)/1=?
问题描述:

n(n+1)/1+(n+1)(n+2)/1+.+(n+2007)(n+2008)/1=?

潘庆谊回答:
  用裂项法:   1/(n+1)(n+2)=1/(n+1)-1/(n+2)   各项同相处理,再相加,抵消得:   所以其和=1/(n+1)-1/(n+2008)
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文