问题标题:
正弦交变电流的有效值是如何推导的?
问题描述:
正弦交变电流的有效值是如何推导的?
胡立坤回答:
由正弦式交变电流的对称性,即只需计算半周期的热效应.将正弦式交变电流的半周期分成n份(n→∞),每份Δt=T/(2n)
I=f(t)=Im*sin(2π/T)*Δt
则,
I1=f(t1)=f(Δt)=Im*sin(π/n)
I2=f(t2)=f(2Δt)=Im*sin(2π/n)
……
In=f(tn)=f(nΔt)=Im*sin(nπ/n)
所以,
W(T/2)=I1²*R*Δt+I2²*R*Δt+……+In²*R*Δt
=Im²*R*(T/2n)*(sin²(π/n)+sin²(2π/n)+……+sin²(nπ/n))
=Im²*R*(T/4)=I²*R*(T/2)
I=(√2/2)*Im
补充证明:(sin²(π/n)+sin²(2π/n)+……+sin²(nπ/n))=n/2
sin²(π/n)=cos²(π/2-π/n)
sin²(2π/n)=cos²(π/2-2π/n)
……
sin²(π/2-π/n)=cos²(π/n)
sin²(π/2)=cos²(π)
sin²(π/2+π/n)=cos²(π/2+π/n)
……
sin²(π-π/n)=cos²(π/2+π/n)
sin²(π)=cos²(π/2)
(sin²(π/n)+sin²(2π/n)+……+sin²(nπ/n))+(cos²(π/n)+cos²(2π/n)+……+cos²(nπ/n))=n
(sin²(π/n)+sin²(2π/n)+……+sin²(nπ/n))=n/2
点击显示
数学推荐
热门数学推荐