问题标题:
【高三数学解答题如图7.已知ab为半圆o的直径,ab=4.c为半圆上的一点,过点c作半圆的切线c.过点a作ad垂直cd于d.交圆于点E.DE=1.1.求证:AC平分角BAD2.书BC的长】
问题描述:
高三数学解答题如图7.已知ab为半圆o的直径,ab=4.c为半圆上的一点,过点c作半圆的切线c
.过点a作ad垂直cd于d.交圆于点E.DE=1.
1.求证:AC平分角BAD
2.书BC的长
宋云麟回答:
1、证明:
∵CD与⊙O相切
∴∠ACD=∠ABC
∵AD⊥CD,AB是⊙O的直径
∴∠ADC=∠ACB=90°
∴⊿ADC∽⊿ACB
∴∠CAD=∠BAC
∴AC平分∠BAD
2、连接BE,OC,两者相交M点
∵∠CAD=∠BAC
∴BC弧=CE弧
∴BC=CE
∵OC是⊙O的半径
∴OC⊥BE
∵AE⊥BE,O点是直径AB的中点
∴OM是⊿ABE的中位线
∴OM=1/2AE
∵AE=1
∴OM=1/2
在RT⊿ABE中,AB=4,AE=1
∴BE=√15
在RT⊿BCM中,BM=1/2BE=1/2√15,CM=OC-OM=2-1/2=3/2
∴BC=√[(1/2√15)2+(3/2)2]=√6
点击显示
数学推荐
热门数学推荐