问题标题:
设A,B为三阶方阵,A的特征值全为非负实数,B=1−122013−13,则秩r(AB+B)=______.
问题描述:
设A,B为三阶方阵,A的特征值全为非负实数,B=
,则秩r(AB+B)=______.
任俊峰回答:
由于AB+B=(A+E)B,而A的特征值全为非负实数
因此,A+E的特征值也是非负实数
∴A+E可逆
∴r(AB+B)=r((A+E)B)=r(B)
又|B|=-3≠0
即r(B)=3
∴r(AB+B)=3
点击显示
其它推荐