问题标题:
知道a^2+b^2+c^2=1求a*b+b*c+a*c>=-1/2
问题描述:
知道a^2+b^2+c^2=1求a*b+b*c+a*c>=-1/2
贾瑞生回答:
解析:∵a2+b2≥2ab,b2+c2≥2bc,a2+c2≥2ac,
∴2(a2+b2+c2)≥2(ab+bc+ca).
又∵a2+b2+c2=1,
∴ab+bc+ac≤1.
∵(a+b)2+(-c)2≥2(a+b)(-c),
∴a2+2ab+b2+c2≥-2ac-2bc,
a2+b2+c2≥-2ab-2ac-2bc.
∴-2(ab+ac+bc)≤a2+b2+c2=1.
∴ab+ac+bc≥-1/2.
点击显示
数学推荐
热门数学推荐