问题标题:
【如何证明f(x)=(ax+b)/(cx+d)的反函数存在,证明是一对一函数】
问题描述:
如何证明f(x)=(ax+b)/(cx+d)的反函数存在,证明是一对一函数
刘秉毅回答:
假设f(x1)=f(x2)(x1不等于x2)
(ax1+b)/(cx1+d)=(ax2+b)/(cx2+d)
得;(ax1+b)(cx2+d)=(ax2+b)/)(cx1+d)
化简得(x1-x2)(ad-bc)=0
得ad=bc
所以当ad=bc时没有反函数
当ad不等于bc时f(x1)=f(x2)(x1不等于x2)不能成立,f(x)=(ax+b)/(cx+d)的反函数存在.
程卫民回答:
"当ad不等于bc时f(x1)=f(x2)(x1不等于x2)不能成立",所以是说x1=x2的时候反函数存在吗
刘秉毅回答:
x1不等于x2是证明的条件证明是一对一函数只需证明:当x1不等于x2时F(X1)不等于F(X2)
点击显示
数学推荐
热门数学推荐