问题标题:
已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:sin2A+sin2B+sin2C=0,cos2A+cos2B+cos2C=0.
问题描述:
已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:sin2A+sin2B+sin2C=0,cos2A+cos2B+cos2C=0.
刘昌孝回答:
证明:由sinA=-(sinB+sinC),cosA=-(cosB+cosC),sin2A+cos2A=1,∴(sinB+sinC)2+(cosB+cosC)2=1,sin2B+2sinBsinC+sin2C+cos2B+2cosBcosC+cos2C=1,2+2cos(B-C)=1即cos(B-C)=-12,sin2A+sin2B+sin2C=2...
点击显示
数学推荐
热门数学推荐