问题标题:
【如图,已知△ABC中.∠A=60°,⊙O是△ABC的外接圆,AD是BC边上的高,H是△ABC的垂心,连接OA、OB、OC,连接OH并延长交AB于M,交AC于N,求证:(1)∠BAD=∠OAC;(2)AH等于△ABC外接圆半径;(3】
问题描述:
如图,已知△ABC中.∠A=60°,⊙O是△ABC的外接圆,AD是BC边上的高,H是△ABC的垂心,连接OA、OB、OC,连接OH并延长交AB于M,交AC于N,求证:
(1)∠BAD=∠OAC;
(2)AH等于△ABC外接圆半径;
(3)MH=NO.
郭艳飞回答:
证明:(1)在Rt△ABD中,∠ADB=90°,
∴∠BAD=90°-∠ABC,
又∵∠AOC=2∠B,∠OAC=∠OCA,
∴∠OAC=12
点击显示
数学推荐
热门数学推荐