字典翻译 问答 高中 数学 (2014•湖北模拟)科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即n2);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运
问题标题:
(2014•湖北模拟)科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即n2);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运
问题描述:

(2014•湖北模拟)科拉茨是德国数学家,他在1937年提出了一个著名的猜想:任给一个正整数n,如果n是偶数,就将它减半(即n2);如果n是奇数,则将它乘3加1(即3n+1),不断重复这样的运算,经过有限步后,一定可以得到1.如初始正整数为6,按照上述变换规则,我们可以得到一个数列:6,3,10,5,16,8,4,2,1.

(1)如果n=2,则按照上述规则施行变换后的第8项为______

(2)如果对正整数n(首项)按照上述规则施行变换后的第8项为1(注:1可以多次出现),则n的所有不同值的个数为______.

刘秦玉回答:
  (1)n=2,减半为1,乘3加1为4,减半为2,减半为1,乘3加1为4,减半为2,减半为1,所以按照上述规则施行变换后的第8项为1;(2)如果正整数n按照上述规则施行变换后的第八项为1;则变换中的第7项一定是2,变换中的第...
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考