问题标题:
若函数f(x)=x/(x^2+m)在x=1处取得极值,m的值为?
问题描述:
若函数f(x)=x/(x^2+m)在x=1处取得极值,m的值为?
倪顺康回答:
对f(x)求导,
f'(x)=[x*1/(x^2+m)]'=1/(x^2+m)-2x^2/(x^2+m)^2
因为在x=1处取得极值,即x=1时,f'(x)=0
所以,1/(m+1)-2(m+1)^2=0
解得:m=1
点击显示
数学推荐
热门数学推荐