问题标题:
【我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角】
问题描述:
我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成一个大正方形(如图所示).如果大正方形的面积是49,小正方形的面积4,直角三角形的两直角边长分别为a,b,那么下列结论正确的有()个.
(1)b-a=2,(2)a2+b2=49,(3)4+2ab=49,(4)a+b=
94
A.1个
B.2个
C.3个
D.4个
卢纯福回答:
由题意可得小正方形的边长=2,大正方形的边长=7,
故可得|b-a|=2,即(1)错误;
a2+b2=斜边2=大正方形的面积=49,即(2)正确;
小正方形的面积+四个直角三角形的面积等于大正方形的面积,即可得4+2ab=49,即(3)正确;
根据(3)可得2ab=45,故可得(a+b)2=a2+b2+45=94,
从而可得a+b=94
点击显示
数学推荐
热门数学推荐