问题标题:
数学统筹类的题目行测应用题目某服装厂有甲乙丙丁四个生产组,甲每天生产8件上衣或10条裤子,乙每天生产9件上衣或12条裤子,丙每天生产7件上衣或11条裤子,丁每天生产6件上衣或7条裤
问题描述:
数学统筹类的题目行测应用题目
某服装厂有甲乙丙丁四个生产组,甲每天生产8件上衣或10条裤子,乙每天生产9件上衣或12条裤子,丙每天生产7件上衣或11条裤子,丁每天生产6件上衣或7条裤子,现在要配套生产,7天内四组最多可生产多少套衣服?
曹秋良回答:
因为做上衣是甲、乙两人比较快,所以让甲乙做上衣,丙丁做裤子。
7天内,甲做了7×8=56件上衣,乙做了7×9=63件上衣,丙做了7×11=77件裤子,丁做了7×7=49件裤子。
所以一共做了56+63=119套衣服。
………………………………………………………………………………………………………………
感觉不太对,行测的题应该没这么简单。
望采纳,谢谢!
冉蜀阳回答:
分析:不能仅按生产上衣或裤子的数量来安排生产,应该考虑各组生产上衣、裤子的效率高低,在配套下安排生产。
我们首先要说明安排做上衣效率高的多做上衣,做裤子效率高的多做裤子,才能使所做衣服套数最多。
一般情况,设A组每天能缝制a1件上衣或b1条裤子,它们的比为在安排A组尽量多做上衣、B组尽量多做裤子的情况下,安排配套生产。这设甲组生产上衣x天,生产裤子(7-x)天,乙组生产上衣y天,生产裤子(7-y)天,则4个组分别共生产上衣、裤子各为6×7+8x+9y(件)和11×7+10(7-x)+12(7-y)(条)。依题意,得
42+8x+9y=77+70-10x+84-12y,
令u=42+8x+9y,则
显然x越大,u越大。故当x=7时,u取最大值125,此时y的值为3。
答:安排甲、丁组7天都生产上衣,丙组7天全做裤子,乙组3天做上衣,4天做裤子,这样生产的套数最多,共计125套。
点击显示
数学推荐
热门数学推荐