问题标题:
求5个数学家的故事
问题描述:
求5个数学家的故事
江修富回答:
高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:
1+2+3+.+97+98+99+100=?
老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?
高斯告诉大家他是如何算出的:把1加至100与100加至1排成两排相加,也就是说:
1+2+3+4+.+96+97+98+99+100
100+99+98+97+96+.+4+3+2+1
=101+101+101+.+101+101+101+101
共有一百个101相加,但算式重复了两次,所以把10100除以2便得到答案等于
从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才
华罗庚的父亲是经营杂货店的小业主,由于经营惨淡,家境每况愈下,致使上中学不久的华罗庚辍学,当了杂货店的记账员.在繁琐、单调的劳作中,他并没有放弃最大的嗜好---数学研究.正在他发奋自学时,灾难从天而降---他染上了可怕的伤寒症,被医生判了“死刑”.然而,他竟然奇迹般地活了过来,但左腿却落下了终生残疾.他常挂在嘴边的是这样一句话:“所谓天才,就是靠坚持不断的努力.”这位没有大学文凭的数学家,凭着坚持不懈的努力,刻苦自学,于1930年,以《苏家驹之代数五次方程式不能成立的理由》的论文,而使中国数学界刮目相看.后被熊庆来教授推荐到清华大学数学系任助教 .在这里,他得益于熊庆来、杨武之的指导,学术上得以长足进步,并逐渐树立起他在世界数学界的地位.1948年应美国一所大学骋请任教.新中国成立后,他毅然放弃优越的工作和生活条件,携妻儿回国,担任清华大学数学系教授,后任中国科学院数学研究所所长.他十分重视和倡导把数学理论应用到生产实践中,并亲自组织和推广“优选法”、“统筹法”,使之在社会主义现代化建设中显示出了巨大的威力.他一生勤奋耕耘,共发表200余篇学术论文、10部专著.作为数学教育家,他培养出陈景润、王元、陆启铿等一批优秀的数学家,并形成了中国数学学派,有的人已成为世界级的数学家.
1985年6月12日,华罗庚在日本讲学时,因突发心肌梗塞而去世,终年75岁.一生以“最大希望就是工作到生命的最后一刻”自勉的华罗庚,将永远活在人民的心中.
第一个算出地球周长的埃拉托色尼
2000多年前,有人用简单的测量工具计算出地球的周长.这个人就是古希腊的埃拉托色尼(约公元前275—前194).
埃拉托色尼博学多才,他不仅通晓天文,而且熟知地理;又是诗人、历史学家、语言学家、哲学家,曾担任过亚历山大博物馆的馆长.
细心的埃拉托色尼发现:离亚历山大城约800公里的塞恩城(今埃及阿斯旺附近),夏日正午的阳光可以一直照到井底,因而这时候所有地面上的直立物都应该没有影子.但是,亚历山大城地面上的直立物却有一段很短的影子.他认为:直立物的影子是由亚历山大城的阳光与直立物形成的夹角所造成.从地球是圆球和阳光直线传播这两个前提出发,从假想的地心向塞恩城和亚历山大城引两条直线,其中的夹角应等于亚历山大城的阳光与直立物形成的夹角.按照相似三角形的比例关系,已知两地之间的距离,便能测出地球的圆周长.埃拉托色尼测出夹角约为7度,是地球圆周角(360度)的五十分之一,由此推算地球的周长大约为4万公里,这与实际地球周长(40076公里)相差无几.他还算出太阳与地球间距离为1.47亿公里,和实际距离1.49亿公里也惊人地相近.这充分反映了埃拉托色尼的学说和智慧.
埃拉托色尼是首先使用“地理学”名称的人,从此代替传统的“地方志”,写成了三卷专著.书中描述了地球的形状、大小和海陆分布.埃拉托色尼还用经纬网绘制地图,最早把物理学的原理与数学方法相结合,创立了数理地理学.
"1名数学家=10个师"的由来
第二次世界大战中,美国曾经宣称:一名优秀的数学家的作用超过10个师的兵力.你可知这句话的由来吗?
1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的"潜艇战"搞得盟军焦头烂额.
为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,按数学角度来看这一问题,它有一定的规律.一定数量的船(如100艘)编队规模越小,编次就越多(如每次20艘,就要有5个编次);编次越多,与敌人相遇的概率就越大.比如5位同学放学都回自己家里,老师要找一位同学的话,随便去哪家都行,但若这5位同学都在其中某一家的话,老师要找几家才能找到,一次找到的可能性只有20%.
美国海军接受了数学家的建议,命令船队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了物资的及时供应.
."数学之神"──阿基米德
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古.父亲是位数学家兼天文学家.阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习.在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》.
后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称.其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明.其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就.尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用.
《砂粒计算》,是专讲计算方法和计算理论的一本著作.阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的.
《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:<π<,这是数学史上最早的,明确指出误差限度的π值.他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法.
《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径.阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的.在这部著作中,他还提出了著名的"阿基米德公理".
《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的
点击显示
数学推荐
热门数学推荐