问题标题:
【高二数学正弦定理在△ABC中,sin2A*(b²-c²)/a²+sin2B*(c²-a²)/b²+sin2C*(a²-b²)/c²的值为怎么解?快要睡觉了!】
问题描述:
高二数学正弦定理
在△ABC中,sin2A*(b²-c²)/a²+sin2B*(c²-a²)/b²+sin2C*(a²-b²)/c²的值为
怎么解?快要睡觉了!
李俊义回答:
由正弦定理有:
(b^2-c^2)/a^2
=(sin^2B-sin^2c)/sin^2A
=(sinB+sinC)(sinB-sinC)/sinA*sinA
=[4sin(B+C)/2*sin(B-C)/2*sin(B-c)/2*cos(B-C)/2]/sin^2A
=sin(B+C)*sin(B-C)/sin^2A
=sin(B-C)/sinA,
于是:
[(b^2-c^2)/a^2*sin2A
=2sinAcosA*sin(B-C)/sinA
=sin(B-C)cosA
=-sin(B-C)cos(B+C)
=sin2C-sin2B;
同理可得:
[(c^2-a^2)/b^2]sin2B=sin2A-sin2C;
[(a^2-b^2)/c^2]sin2C=sin2B-sin2A.
于是:
[(b^2-c^2)/a^2]*sin2A+[(c^2-a^2)/b^2]sin2B+[(a^2-b^2)/c^2]sin2C=0.
点击显示
数学推荐
热门数学推荐