问题标题:
已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和eaf(0)大小关系为()A.f(a)<eaf(0)B.f(a)>eaf(0)C.f(a)=eaf(0)D.f(a)≤eaf(0)
问题描述:
已知可导函数f(x)(x∈R)满足f′(x)>f(x),则当a>0时,f(a)和eaf(0)大小关系为()
A.f(a)<eaf(0)
B.f(a)>eaf(0)
C.f(a)=eaf(0)
D.f(a)≤eaf(0)
田尊华回答:
由题意知,可设函数f(x)=e2x,
则导函数f′(x)=2•e2x,显然满足f'(x)>f(x),
f(a)=e2a,eaf(0)=ea,当a>0时,显然 e2a>ea,即f(a)>eaf(0),
故选B.
点击显示
数学推荐
热门数学推荐