字典翻译 问答 高中 数学 一条分式数学题,希望能有高手为我详细的解答.已知:a+b+c=0且(b-c/a)+(c-a/b)+(a-b/c)=0,求证:(bc+b-c/b^2c^2)+(ca+c-a/c^2a^2)+(ab+a-b/a^2b^2)=0.
问题标题:
一条分式数学题,希望能有高手为我详细的解答.已知:a+b+c=0且(b-c/a)+(c-a/b)+(a-b/c)=0,求证:(bc+b-c/b^2c^2)+(ca+c-a/c^2a^2)+(ab+a-b/a^2b^2)=0.
问题描述:

一条分式数学题,希望能有高手为我详细的解答.

已知:a+b+c=0且(b-c/a)+(c-a/b)+(a-b/c)=0,求证:(bc+b-c/b^2c^2)+(ca+c-a/c^2a^2)+(ab+a-b/a^2b^2)=0.

满春涛回答:
  (bc+b-c)/(b^2c^2)+(ca+c-a)/(c^2a^2)+(ab+a-b)/(a^2b^2)   =a^2(bc+b-c)/(b^2c^2a^2)+b^2(ca+c-a)/(c^2a^2b^2)+c^2(ab+a-b-1)/(a^2b^2c^2)   =(a^2bc+a^2b-a^2c+b^2ac+b^2c-b^2a+c^2ab+c^aa-c^2b)/(a^2b^2c^2)   =[(a+b+c)abc+a^2b-a^2c+b^2c-b^2a+c^2a-c^2b)]/(a^2b^2c^2)   =[(a+b+c)abc+a^2b-b^2a+a^2c-c^2a+b^2c-c^2b)]/(a^2b^2c^2)   =[(a+b+c)abc+(a-b)ab+(b-c)bc+(c-a)ac]/(a^2b^2c^2)   ={(a+b+c)abc+abc[(b-c)/a+(c-a)/b+(a-b)/c]}/(a^2b^2c^2)   =0
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 政治
  • 地理
  • 历史
  • 化学
  • 生物
  • 物理
  • 综合
  • 高考