问题标题:
一道数学题,:(2+1)*(2^2+1)*(2^4+1)*~*(2^64+1)+1的值.
问题描述:
一道数学题,:(2+1)*(2^2+1)*(2^4+1)*~*(2^64+1)+1的值.
毛先柏回答:
(2+1)(2^2+1)(2^4+1)……(2^64+1)+1
=(2-1)(2+1)(2^2+1)(2^4+1)……(2^64+1)+1{2-1的值是1,任何数乘以1都得原数,所以(2+1)(2^2+1)(2^4+1)……(2^64+1)乘上(2-1)值不变}
=(2^2-1)(2^2+1)(2^4+1)……(2^64+1)+1
=(2^4-1)(2^4+1)……(2^64+1)+1
=(2^64-1)(2^64+1)+1
=2^128-1+1
=2^128
点击显示
数学推荐
热门数学推荐