字典翻译 问答 小学 数学 已知f(x)=ax^2+x对任何实数x1,x2,f[(x1+x2)/2]>=[f(x1)+f(x2)]/2恒成立,则a的取值范围,
问题标题:
已知f(x)=ax^2+x对任何实数x1,x2,f[(x1+x2)/2]>=[f(x1)+f(x2)]/2恒成立,则a的取值范围,
问题描述:

已知f(x)=ax^2+x对任何实数x1,x2,f[(x1+x2)/2]>=[f(x1)+f(x2)]/2恒成立,则a的取值范围,

郭刚回答:
  先化简直接代入原来式子得   a(x1+x2)2大于等于2a(x1平方+x2平方)   a等于0时显然上述恒成立   当a大于0时,在上述不等式两边同时除以a   得到x1平方+x2平方小于等于2x1x2   这个显然和基本不等式违背,所以舍去   当a小于0时,上述不等式得到得到x1平方+x2平方大于等于2x1x2   这是恒成立的基本不等式   所以综上a小于等于0时才能满足条件
点击显示
数学推荐
热门数学推荐
  • 语文
  • 数学
  • 英语
  • 科学
  • 作文