问题标题:
解析几何代数题,已知椭圆x2/4+y2/3=1,过点(0,-2)的直线l交椭圆于A,B两点,交X轴于P点,点A关于X轴,的对称点为C,直线BC交X轴,于Q点,2)探究|OP|·|OQ|是否为常数?
问题描述:
解析几何代数题,
已知椭圆x2/4+y2/3=1,过点(0,-2)的直线l交椭圆于A,B两点,交X轴于P点,点A关于X轴,的对称点为C,直线BC交X轴,于Q点,2)探究|OP|·|OQ|是否为常数?
龙汝昌回答:
这种题一般结论都是常数
直线AB垂直于X轴,即AB重合于Y轴的特殊情况不考虑
以下设AB的斜率存在,且为k,设直线AB的方程为L:y=kx-2,A(x1,y1),B(x2,y2),C(x1,-y1),
P(m,0)(易知m=2/k),Q(n,0),直线BC的斜率为p,
则联立L的方程:y=kx-2(1)与椭圆的方程:x^2/4+y^2/3=1(2)可得关于x的方程(4k^2+3)x^2-16kx+4=0(3),x1,x2为方程(3)的两根,由韦达定理,x1+x2=16k/(4k^2+3),x1*x2=4/(4k^2+3)
然后根据直线BC的斜率有式子p=(yB-yQ)/(xB-xQ)=(yB-yC)/(xB-xC),即p=y2/(x2-n)=(y2+y1)/(x2-x1),从而有n=(x1*y2+x2*y1)/(y1+y2)=(2k*x1*x2-2(x1+x2))/(k(x1+x2)-4)=2k,
从而mn=(2/k)*(2k)=4,|OP|*|OQ|=|mn|=4为定值
点击显示
数学推荐
热门数学推荐