问题标题:
【如图,在△ABC中,∠C=90°,D、E在BC上,BD=DE=EC=AC,指出图中哪两个三角形相似,并证明你的结论.】
问题描述:
如图,在△ABC中,∠C=90°,D、E在BC上,BD=DE=EC=AC,指出图中哪两个三角形相似,并证明你的结论.
解学书回答:
△AED∽△BEA,…(2分)证明如下:在△AED和△BEA中,∵△ABC中,∠C=90°,BD=DE=EC=AC,∴△AEC为等腰直角三角形,BE=BD+DE=2BD=2AC,∴∠AEC=45°,即sin∠AEC=ACAE,∴AE=AC22=2AC,∴AEDE=BEAE=22=2,…(3分...
点击显示
数学推荐
热门数学推荐